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It was shown in Rossmanith [Acta Cryst. (1992), A48, 596–610] that the peak

width of intensity profiles of multiple diffraction events can be calculated in a

simple manner from the divergence � and the wavelength spread ��/� of the

incident beam and from the mosaic spread � and the magnitude r of the ideally

perfect crystallites in the sample. In the present paper, an improvement of the

concept is given.

1. Introduction

The perturbation of the intensity of any primary reflection

caused by multiple diffraction can be handled exactly only in

the framework of the dynamical theory (Renninger, 1937, x7),

i.e. the infinite system of fundamental equations [see for

example von Laue, 1960, expression (26.32)] has to be solved.

According to Renninger (1937), ‘ . . . such a solution is missing

until now. But even if such a solution could be found, . . . , it

would be applicable only for the ideally perfect crystal and

would strongly depend on the shape of the sample in

consideration.’

Up to now, several authors have proposed approaches to

the problem. All these approaches have two requirements in

common. First of all, the solutions are limited to semi-infinite

plane-parallel perfect crystal slabs. Secondly, the number of

equations is reduced to N equations, where N is the number of

reciprocal-lattice points lying simultaneously very close to or

on the Ewald sphere [see for example von Laue’s expression

(27.5) for the two-beam case and expressions (27.15) for the

three-beam case]. Anyway, the absence of the Aufhellung

terms in the result, equation (27.16), given by von Laue for a

very special three-beam case, indicates that reducing the

infinite system of fundamental equations to a system of three

equations results in an improper solution, i.e. at least more

than three equations have to be used. Unfortunately, the

system of fundamental equations with more than two equa-

tions is not solvable exactly. Numerical methods are proposed

by several authors instead. Nevertheless, until now, in the

framework of the dynamical theory, ‘theoretical fitting of the

profiles is only possible in exceptional cases where the

diffraction geometry is accurately known’ (Weckert &

Hümmer, 1997, page 133, right column).

According to Renninger, therefore, ‘ . . . it can be expected

that in practice . . . more primitive considerations may render

the same service as an exact theory, whose requirements are

poorly fulfilled.’ Consequently, in chapter 7 of his famous

paper, Renninger discussed two kinematical approaches, the

‘simplest approach’ (einfachster Ansatz) and a ‘more sophis-

ticated approach’ (verfeinerter Ansatz), which is similar to the

approximate kinematical approach presented by Moon &

Shull (1964), who considered multiple diffraction in imperfect

crystals as an extension of the theory of secondary extinction

by generalizing the power-transfer equations of two-beam

cases. Interference effects as well as multiple diffraction

(primary extinction) inside the coherent blocks of the mosaic

crystal were neglected.

The author’s concept (Ro-06-x2),1 on the other hand, is

based on Renninger’s ‘simplest approach’ for the evaluation

of the integrated intensities [Ro-00-(x2.1)], combined with the

results of classical optics [Ro-04-(6)] and the derivation of the

phase of the complex interference function in the framework

of the kinematical theory [Ro-04-(Appendix A)]. Further-

more, for the evaluation of the distribution of the integrated

intensity during  scans, the knowledge of the profile width

and Lorentz factors is essential. Because of considerable

shortcomings of previous expressions given in the literature

for the Lorentz factor (Moon & Shull, 1964; Prager, 1971;

Chang & Post, 1975; Unangst & Melle, 1975; Post, 1975, 1976)

and the peak width (Collela & Merlini, 1966; Caticha-Ellis,

1975; Cousins et al., 1978), a new concept for the evaluation of

the Lorentz factors and peak widths derived by means of

purely geometrical considerations in reciprocal space was

developed (Ro-92). Based on this concept, the program

UMWEG-90 was written. Satisfactory agreement between

calculated  scans and those measured by the author’s team

could be obtained in all cases of forbidden primary reflections

(Bengel, 1991; Werner, 1993; Rossmanith et al., 1994; Ross-

manith & Bengel, 1995), with one exception, the pattern of the

882 primary reflection of YIG. The concept was therefore

reanalysed in 1995. Because of Mathieson’s (1994) rejection of

1 Most of the expressions and figures discussed in this paper were derived or
presented in previous papers of the author. These expressions, figures,
Appendices etc. will be referenced in the following by the abbreviation
Ro-xxy-(z), where xx represents the last two digits of the year of publication, y
stands for a, b, c etc. if more than one paper in the respective year is
referenced, and z represents the number of the expression, figure, Appendix
etc. under consideration.



the author’s concept for the evaluation of the width of

reflection peaks, it was not possible to publish the modification

before a thorough analysis of the shape and width of intensity

profiles, which was finally presented in Ro-02a and Ro-02b. In

x2, the modified derivation of the profile widths of multiple

diffraction events will be discussed. In x3, two application

examples will be presented, one for pure Umweganregung (the

forbidden 882 primary reflection of YIG) and one for multiple

diffraction (the very strong �11�111 primary reflection of Si).

2. Modified derivation of the profile width of multiple
diffraction events

Starting with Ro-00-(1) given by Renninger (1937), it was

shown in Ro-00-(x2) and Ro-00-(x3.1) that the power received

in the counter during the rotation about the  axis is given by

[Ro-06-(5)]

Ið!Þs1
ð Þ ¼ fIð!Þprim � I

ð!; Þ
Aufh f ð Þg þ I

ð!; Þ
Umwegf ð Þ þ I

ð!Þ
interferð Þ; ð1Þ

where I
ð!Þ
prim is the intensity of the primary reflection integrated

with respect to the ! rotation, I
ð!; Þ
Aufh and I

ð!; Þ
Umweg are the

intensities of the Aufhellung and Umweganregung term,

respectively, integrated with respect to both axes, ! and  
[Ro-06-(6)]. I

ð!Þ
interferð Þ is the interference term defined in

Ro-06-(7) and f ð Þ is a normalized distribution function.

It was found by comparisons of theoretical and experi-

mental multiple diffraction patterns that f ð Þ can be well

approximated by an asymmetric normalized split-pseudo-

Voigt function consisting of two halves, PVð Þleft and

PVð Þright, with different widths and different mixing param-

eters for the left and right side, respectively, but with a

common maximum value, where PVð Þ is the normalized

pseudo-Voigt function [Ro-02b-(Appendix A) and Ro-02b-

(Fig. 14)]

PVð Þ ¼
1

� total
integral

ð1� �LGÞ exp ��
 �  0

� total
integral

 !2( )2
64

þ �LG

1

1þ
�
�ð � 0Þ

� total
integral

�2

3
75: ð2Þ

 0 corresponds to the value of the variable in the peak

maximum. The mixing parameter �LG is a measure of the

Lorentzian contribution to the pseudo-Voigt distribution.

� total
integral, the total integral width of the distribution with

respect to the rotation about the  axis, mainly depends on the

radius of the perfect crystallites and the divergence and

wavelength spread of the incident beam. In the case of a

mosaic crystal, additionally the mosaic spread will broaden the

distribution:

� total
integral ¼ ð� crystal size þ� divergence þ� wavelength spread

þ� mosaic spreadÞ; ð3Þ

i.e. the width � total
integral is approximated by the sum of the

contributions (see Ro-02b).

The concept of the evaluation of the distribution widths by

means of purely geometrical considerations is discussed in

detail in Ro-92-(xII.A.1) for single diffraction and in Ro-92-

(xII.B.b.1) for multiple diffraction.

The reasoning concerning the peak broadening in the case

of multiple diffraction is based on the considerations under-

lying the figures Ro-92-(Figs. 3a–d), in which the dependence

of the peak width on the radius r of an ideally perfect crystal

sphere, the wavelength spread, ��/�, the beam divergence, �,
and the mosaic spread, �, are graphically represented. The

knowledge of these figures and Ro-92-(xII.A.1) is indis-

pensable for the understanding of Ro-92-(Figs. 8a, b), in which

the elevation and section plane of the geometry in reciprocal

space, given in Ro-92-(Fig. 2), with respect to the direction of

the  axis for a real experiment are shown. For reasons

discussed below, Ro-92-(Figs. 8a, b) have to be replaced by

Fig. 1 of the present paper.

It is obvious from Fig. 1 as well as Ro-92-(Fig. 8a) that, in

contrast to the condition during the ! rotation (called �
rotation in Ro-92), the reciprocal-lattice point B belonging to

the primary reflection hprim (= OB in Fig. 1) as well as to the

cooperative reflection hcoop (= SB in Fig. 1) does not move

during  rotation, i.e. both reflections remain in the reflection

position.

For ! = �prim, where �prim is the Bragg angle of the primary

reflection, in the case of Ro-92-(Fig. 8a) the effective diver-

gence of the beam in the plane defined by the incident ray and

the vector hprim is limited by the angle �p,eff = minimum(�p, �)

between the rays a and b, where �p is the divergence of the

incident beam in the plane of Ro-92-(Fig. 8a), M is the centre

of the Ewald sphere with radius 1/�, M1a, M1b are the centres

of the spheres S1a, S1b both with the radius 1/(� + ��/2) � ",
and M2a, M2b are the centres of the spheres S2a, S2b, both with

radius 1/(� � ��/2) + ", where " = 1/r. The peak width � of

the multiple diffraction event during  rotation can be

deduced from Ro-92-(Fig. 8b) and is obviously given by

Ro-92-(17) and Ro-92-(18) (the relation between the width at

half maximum, FWHM, and the integral width is discussed in

Ro-02b and will not be considered in the present paper):

� total
integral ¼ �2 � �1 þ �s; þ �

op

 
: ð4Þ

Unlike Fig. 1 of the present paper, Fig. 8(a) in Ro-92, defining

the profile width of the multiple diffraction events, is not

symmetrical with respect to the section plane passing through

the centre M normal to the  axis, i.e. it is not symmetrical

with respect to the plane 0 defined in Fig. 1. Consequently, a

larger width is expected for an operative reflection whose

reciprocal-lattice point [O0 in Ro-92-(Fig. 8a)] passes the

Ewald sphere above plane 0 (for example plane 1 defined in

Fig. 1) than for an event passing the Ewald sphere below plane

0 having the same distance from plane 0 (plane 2 defined in

Fig. 1). This asymmetry results from the assumption made in

1992 that, for each ray between the rays a and b, all wave-

lengths in the range � � ��/� � � � � + ��/� contribute to
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the diffraction process. As will be shown in x3, no experi-

mental evidence could be found for this assumption.

The concept introduced in 1992 was therefore reanalysed in

1995 to take into account the experimental result obtained for

the 882 primary reflection of YIG (Fig. 3b) as well as the

reasoning corresponding to Ro-93-(Fig. 2) (see the text on the

lower half right column on page 82 in Ro-93): i.e. if only those

wavelengths of each ray whose corresponding Ewald sphere

passes through the zero point O of the reciprocal lattice as well

as through the lattice point of the primary reflection B can

contribute to the multiple diffraction event, the centres of

possible Ewald spheres are the intersection points between

the bisector of the reciprocal-lattice vector hprim (= OB in Fig.

1) and the respective incident ray, i.e. the centres have to be

located on the horizontal line in Fig. 1(a), where the red (blue)

sphere corresponds to the minimum (maximum) wavelength

with centre Mmin (Mmax), although all rays between the

limiting rays a and b in Fig. 8(a) of Ro-92 comprise the whole

range of wavelengths.

Keeping in mind that the three vectors hprim, hop and hcoop

form the rigid triangle OSB with side length d�prim, d�op and

d�coop, with d�i ¼ 1=di, where di is the appropriate interplanar

spacing, the angle between hprim and hop, � , and the

components hp, (= OO1 in Fig. 1a) and hn, (= O1S1 = O1S2 in

Fig. 1b) of hop parallel and normal to hprim can easily be

calculated according to

cos� ¼ ðd
�2
prim þ d�2op � d�2coopÞ=ð2d�primd�opÞ ð5Þ

hn; ¼ d�op sin� ð6Þ

hp; ¼ d�op cos� : ð7Þ

The profile width in  can be deduced from Fig. 1(b)

representing, as an example, the section plane 1. M1U1 (M2U2)

is the radius of the blue (red) circle representing the Ewald

sphere in this section plane (see Fig. 1a). If the broadening by

the radius of the perfect spherical crystal sample is taken into

consideration, the ‘thickness’ of the Ewald sphere is addi-

tionally broadened by two times " = 1/r, indicated by the two

black circles in Fig. 1(b), i.e. the reciprocal-lattice ‘sphere’ with

radius " = 1/r touches the Ewald sphere first at S2 (reciprocal-

lattice point lies outside the Ewald sphere, the distance

between the centre of the Ewald sphere and the centre of the

reciprocal-lattice ‘sphere’ is the sum of the radii of the two

spheres) and last at S1 (reciprocal-lattice point lies inside the

Ewald sphere, the distance between the centre of the Ewald

sphere and the centre of the reciprocal-lattice ‘sphere’ is the

difference of the radii of the two spheres). The width of the

intensity profile caused by the divergence and wavelength

spread of the incident beam and the radius of the crystallite is

therefore defined by the angle /(S1O1S2) = �2 � �1, where �1

can be calculated from the triangle M1O1S1 and �2 from the

triangle M2O1S2:

�1 ¼ a cosfðr2
11 þ h2

n; � r2
12Þ=ð2r11hn; Þg

�2 ¼ a cosfðr2
21 þ h2

n; � r2
22Þ=ð2r21hn; Þg

ð8Þ
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Figure 1
The diffraction geometry in reciprocal space with respect to the direction
of the  axis. (a) Elevation. (b) Section plane 1.

Figure 2
The diffraction geometry in reciprocal space with respect to the direction
of the  axis. Section plane 3 defined in Fig. 1(a).



with r11 = MmaxO0 = M1O1, r21 = MminO0 = M2O1, r12 = M1S1,

r22 = M2S2. It can easily be shown that, with

��max ¼ 1=ð�þ��=2Þ, ��min ¼ 1=ð����=2Þ and d1 = O0O1,

r11 ¼ f�
�2
max � ðd

�
prim=2Þ2g1=2

r21 ¼ f�
�2
min � ðd

�
prim=2Þ2g1=2

r12 ¼ fð�
�
max � "Þ

2
� d2

1g
1=2

r22 ¼ fð�
�
min þ "Þ

2
� d2

1g
1=2:

ð9Þ

It is obvious from Fig. 1(a) that the scheme of the section

planes will strongly depend on the distance d1. In Fig. 2, the

section plane 3 is shown for comparison. It should be noted

that there are two points of intersection between the blue and

red Ewald spheres. It can easily be shown that on the right of

the two intersection points the expressions for r12 and r22 have

to be replaced by

r12 ¼ fð�
�
max þ "Þ

2
� d2

1g
1=2

r22 ¼ fð�
�
min � "Þ

2
� d2

1g
1=2:

ð10Þ

The divergence �s; [see expression (4)] which depends on

�prim can be deduced by means of Ro-92-(Fig. 8d). �s; is

related to �s, the divergence of the incident beam in the plane

perpendicular to the plane of Fig. 8(a) of Ro-92 by

�s; ¼ 2 arcsinfsinð�s=2Þ= cos �primg: ð11Þ

�op
 is the angle of rotation in the plane normal to the  axis

corresponding to the mosaic spread �:

�op
 ¼ 2 arcsinfsinð�=2Þ= sin� g: ð12Þ

3. Comparison with the experiment

3.1. Example for pure Umweganregung

The synthetic perfect spherical YIG crystal (radius r =

150 mm) used for the experiment is an example for large

absorption and severe primary extinction. The measurement

(Fig. 3b) was performed on a Enraf–Nonius CAD-4 diffrac-

tometer with an Ag tube. The  -scan pattern of the forbidden

882 reflection is of interest because of the mirror plane at  �
�24� and the extraordinary width of the four peaks at  
values of about �56 and �47� caused by the 12,10,2/�44�220 event

and of about �1 and 8� caused by the �22�440/10,12,2 event. It is

obvious from the corresponding

peak location plot (Fig. 3d) that

the reciprocal-lattice points of

the operative reflections corre-

sponding to these Umweganregung

peaks do not touch the Ag K�2

Ewald sphere. The widths of these

peaks therefore mainly arise from

the wavelength spread of the Ag

K�1 line and the radius of the

reciprocal-lattice ‘spheres’. The

operative reflections 12,10,2 and
�22�440 pass the Ag K�1 Ewald sphere

in the section plane 1 and plane 2

defined in Fig. 1, respectively, both

having the same short component

hn, (= O1S = O2S), represented

schematically for the 12,10,2

operative reflection by the green

arc in Fig. 1b.

In Fig. 3(a), the theoretical scan

calculated with UMWEG-90, i.e.

using the concept represented in

Ro-92-(Fig. 8a), is shown (Werner,

1993). As pointed out in x2, this

concept predicts a larger peak

width for the 12,10,2/�44�220 event

than for the �22�440/10,12,2 event, a

prediction which does not agree

with the experimental result.

The theoretical scan obtained

with UMWEG (Ro-99, Ro-03), on

the other hand, which is based on

Fig. 1, is an excellent simulation of
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Figure 3
The pattern of the 882 reflection of YIG (a) calculated with UMWEG-90, (b) measured with Ag K�
radiation, (c) calculated with UMWEG, (d) peak location plot.



the experimental pattern. The deviations between the

measured and calculated scans in this sample (Figs. 3b, c) can

be attributed to the rough surface of the YIG sample, repre-

sented as an electron-microscope image in Rossmanith et al.

(1993, Fig. 3b), i.e. to the fact that using the input data of a

perfect crystal [Ro-99-(Table 1)] neglects the intensity

contribution of the imperfect surface.

3.2. Example for multiple diffraction

In Fig. 4, the graphical output of the program UMWEG of

the multiple diffraction pattern of the very strong �11�111 primary

reflection of Si (lattice constant a = 5.4282 Å) is shown. The

experimental conditions and the sample used for the

measurement with synchrotron radiation (� = 1.43765 Å) are

identical with those of Ro-00-(x4). The measured upper scan

showing three dips is compared with the theoretical lower

scan. Because of the fact that the measurement does not show

any typical interference effects corresponding to the triplet

phases 0 and 180� of the multiple diffraction events [see for

example Ro-00-(Fig. 4)], the calculation was performed

neglecting the interference term in expression (1). Regarding

Table 1 in which the indices, structure factors, intensities,  
values and FWHMs of the events corresponding to the

multiple diffraction pattern of the �11�111 primary reflection of Si

presented in Fig. 4 are summarized, it becomes clear that the

three dips are built up by eight multiple diffraction events,

four of them having a very large FWHM (0.7 –0.8�), the other

four having the typical FWHM (0.015�) of intensity distribu-

tions measured with synchrotron radiation in the 90’s at

HASYLAB (DESY, Germany). For all events, the Aufhellung

term is larger than the Umweganregung term [expression (1)].

Nevertheless, the agreement between the experimental scan

and the theoretical scan calculated according to Ro-06-(5) and

Ro-06-(13) is surprisingly good.

4. Conclusions

As was shown in x3 and the many examples presented in

previous papers of the author, especially in the case of pure

Umweganregung or pure Aufhellung, excellent results can be
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Table 1
The indices, structure factors, intensities,  values and FWHMs of the
events corresponding to the multiple diffraction pattern of the �11�111
primary reflection of Si presented in Fig. 4.

hklop Fop hklcoop Fcoop IUmw IAufh  FWHM

�33�113 39 20�22 69 137 397 223.360 0.804
�4404 44 3�11�33 39 31 116 223.360 0.701
�11�113 45 00�22 0 0 194 224.848 0.015
004 58 �11�11�33 45 22 114 224.848 0.014
�33�111 45 200 0 0 194 224.871 0.015
�4400 58 3�111 45 22 114 224.871 0.014
�4404 44 3�11�33 39 31 116 226.358 0.701
�33�113 39 20�22 69 137 397 226.358 0.804

Figure 4
Graphical output of UMWEG for the �11�111 primary reflection of Si measured with synchrotron radiation.



obtained with the program UMWEG, which renders the

multiple diffraction patterns on an absolute scale.

Reflecting, on the other hand, the many approximations

made in the course of derivation of the expressions presented

by the author and the large number of variables affecting the

height and width of the profiles [modulus and phase of the

structure factors involved, Lorentz factors, temperature

factors, path lengths, polarization factors, choice of the

normalized distribution function, divergence and wavelength

spread of the incident beam, shape and mosaicity of the

sample, cosine of the angle between the electric vectors of the

primary and Umweg waves, absorption, primary and

secondary extinction and last but not least the approximation

Ro-06-(20) for ’latticeð Þ], in the framework of the kinematical

theory the intensity profile shapes of azimuthal scans of strong

primary reflections will scarcely be predictable from the

structure factors of the reflections involved (see x4.4 in

Weckert & Hümmer, 1997). In most cases, at least qualitative

agreement between theory and experiment can be achieved

only by taking into account all the above-mentioned variables.

Therefore, in the authors opinion, phase determination for

acentric structures by means of the program UMWEG will

only be possible in exceptional cases.

In order to enable and simplify further developments and

improvements in analysis in the field of kinematical multiple

diffraction, the Fortran90 sources of the program UMWEG

was deposited (IUCr electronic archive, see Ro-07 for

details).
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